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Numerical calculation of the energy eigenvalues 
for a local potential? 

A P S SIROHI and M K SRIVASTAVA 
Department of Physics, University of Roorkee, Roorkee, UP, India 

MS received 12 October 1971, in revised form 22 May 1972 

Abstract. A recent method, based on obtaining a first order nonlinear differential equation, 
to calculate the energy eigenvalues for a local potential has been improved. Two trans- 
formations which are capable of greater manoeuvrability and which reduce computational 
labour are suggested. 

1. Introduction 

Recently Kermode (1971) proposed a method for calculating S state energy eigenvalues 
for a local potential. It was later generalized for higher angular momentum states 
(Kermode and Nunn 1971). This method is essentially based on transforming the 
Schrodinger equation into a first order nonlinear differential equation. It is in the spirit 
of Calogero's variable phase approach for scattering phase shifts (Calogero 1967). 
Proper boundary conditions are obtained by suitably transforming the logarithmic 
derivative y.  The technique of reducing a second order differential equation into first 
order equations for finding the solutions is not new and has been suggested earlier, 
for example, by Priiffer (Hartman 1964) for homogeneous equations and Ridley (1957) 
for inhomogeneous equations. But the method has never been used for finding the 
eigenvalues. 

In this paper we have suggested two transformations. They add to the usefulness 
and the flexibility of the method proposed by Kermode and Nunn. 

The logarithmic derivative y I J r )  of the radial solution ul+(r) of the Schrodinger 
equation for negative energies (- h2p2/2m, where m is the reduced mass) satisfies the 
differential equation 

with the boundary condition y,,,(O) = CO. At the energy of a bound state (say pB) 

where zB = ipBr and h{')(zB) is the Riccati-Hankel function of the first kind. The prime 
denotes differentiation with respect to r .  

t This work was partly supported by the Department of Atomic Energy, Government of India. 
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2. Transformations 

In order to  obtain a well behaved function Kermode and Nunn (1971) used the following 
transformation : 

Yl&) = Ir cot h,p(r)  + P L , P k )  
giving j&(O) = 0 and fi,+Ja) = (2n+  1)x/2. This transformation does not have any 
adjustable parameter. We, instead, suggest writing y I J r )  as 

The function q(r)  is essentially a smooth function vanishing linearly as r ---f 0 and going 
to +_ 1 for large r .  This function should preferably have a range shorter than the range 
of the interaction. This will be helpful in reducing the range of integration. There can, 
of course, be many functions satisfying this criterion. One good choice is 

( 5 )  

This leads to boundary conditions identical with those of Kermode (1971), namely, 
J,JO) = 0 and &,(a) = (n+: )x .  For 1 = 0, this transformation reduces to  that of 
Kermode (1971). The parameter y can have any value greater than two. 

Another choice for q(r )  leading to  the same boundary conditions (ie &JO) = 0, 
J,ve(a) = ( n + W  is 

q(r) = - ( l - & ~ - l ) e - q r )  

where 

e(x) = 1 .Y 3 0 

= o  x < o .  
The parameter y could have any value such that y - is smaller than the range of the force. 
For 1 = 0, this case also reduces to  that of Kermode (1971). 

3. Calculation and results 

We have compared the method of Kermode and Nunn with our two transformations for 
a simple model potential of the square well type (depth 20 fm-*, range 1 fm). We con- 
sider only the I = 1 case. This potential supports only one bound state with 
pB = 2.6765526fm-'. The equations, in each case, were integrated by the Runge- 
Kutta method taking a fixed step length. The parameter q, which enters our trans- 
formations was taken equal to  3, 5 and 8. 

In table 1 we give the values which the function f takes at  1 fm (beyond this the 
potential is zero) for the different cases. In every case p is equal to  pB. The last row gives 
the exact limiting value. Our first approximation gives five decimal place accuracy 
with a step length of 0.025 fm, while a step length of at least a fifth of this has to be 
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Table 1. Values of the functionfat 1 fm for the different methods 

Step Method of First transformation Second transformation 
length Kermode 

a n d N u n n q = 3  q = 5  q = 8  q = 3  q = 5  q = 8  

0.025 1.571812 2.356194 2.356193 2.356193 2.381713 2.359567 2.356345 
0.0125 1.570931 2.356192 2.356192 2.356192 2.381715 2.359570 2.356357 
Limiting 
value 1.570796 2,356196 2.356 196 

used with the method of Kermode and Nunn for the same accuracy (with the step length 
of 000625fm we got the limiting value of 1.570754). Our second transformation 
apparently does not appear to be good. The reason is that the function q(r) has not yet (at 
r = 1 fm) attained its asymptotic value. For the cases where the potential is not discrete, 
as is the case with our model potential, this transformation is as good as the first one. 

Another point of interest is the rate of growth of f ( r )  with r .  For q = 8, f ( r )  attains 
about 40% of its limiting value at r = 0.5 fm. It can be further increased by taking a 
larger value of q. No such parameter is available in the method of Kermode and Nunn. 
This is interesting because one can reduce the number of steps in the integration by 
taking a variable step length ; fine for small r where most potentials are strong and coarse 
for large r. 

The potentials containing a hard core (radius c) can also be handled by taking the 
boundary conditions Y , , , ~ ( C )  = OD andfr,aB(c) = 0, and integrating equation (4) onwards 
from r = c. 

The proposed transformations thus reduce considerably the computational labour 
in finding the eigenvalues compared with the procedure of Kermode and Nunn. In 
particular the availability of the free parameter q greatly adds to the versatility of this 
method. 
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